quinta-feira, 20 de agosto de 2009

Paralelismo entre retas


Ângulos suplementares:

São dois ângulos cuja soma vale 180º.

Na figura acima, sobre a mesma reta, temos um ângulo azul e um ângulo vermelho, cuja soma vale 180º, pois formam um ângulo raso.

Lembrados esses conceitos, vamos estudar as relações entre ângulos determinados por uma transversal em retas paralelas.

Observe a figura abaixo.

As retas r e s são paralelas "cortadas" pela transversal t.

Os ângulos 1, 2, 3 e 4 são os ângulos determinados pela transversal t em r - e os ângulos 5, 6, 7 e 8 são determinados por t em s.

Se "recortássemos" a figura conforme o pontilhado, poderíamos tranquilamente encaixar o pedaço recortado sobre a parte de baixo da figura, ou seja, os ângulos 1, 2, 3 e 4 "encaixariam" perfeitamente sobre os ângulos 5, 6, 7 e 8, nessa ordem:

Assim, dizemos que esses ângulos são correspondentes e, como podemos perceber, ângulos correspondentes têm a mesma medida.

Como os pares 1 - 4 e 5 - 8 são opostos pelo vértice e 1 - 5 e 4 - 8 são correspondentes, todos eles têm a mesma medida.

Pelo mesmo motivo, 2, 3, 6 e 7 também têm a mesma medida.

Formando ângulo raso, temos 1 - 2, 3 - 4, 5 - 6, 7 - 8. Cada um desses pares forma um ângulo raso. Sabendo que 2, 3, 6 e 7 têm a mesma medida (ângulos obtusos) e que 1, 4, 5 e 8 têm a mesma medida (ângulos agudos), podemos observar na figura um ângulo agudo qualquer e um obtuso qualquer sendo sempre suplementares.
Nomeando as propriedades
Agora vamos nomear essas propriedades observadas. Para isso, é preciso entender um pouco a nomenclatura utilizada em geometria.

Dadas duas retas paralelas e uma transversal, os ângulos determinados pela transversal na região entre as paralelas são chamados de internos. Logo, os que não estão entre as paralelas são chamados de externos.


Já os ângulos que estão do mesmo lado em relação à transversal, ou seja, do lado direito ou do lado esquerdo, são chamados colaterais. Os que estão em lados opostos são chamados alternos. < td>


Alternos Internos: 3 e 6, 4 e 5 São congruentes
(mesma medida).
Externos: 1 e 8, 2 e 7
Colaterais Internos: 3 e 5, 4 e 6 Formam ângulo raso
(medem juntos 180º).
Externos: 1 e 7, 2 e 8
Correspondentes 1 e 5, 2 e 6, 3 e 7, 4 e 8 São congruentes.
Opostos pelo vértice 1 e 4, 5 e 8, 2 e 3, 6 e 7 São congruentes

terça-feira, 18 de agosto de 2009

ÂNGULOS OPOSTOS PELO VÉRTICE (O.P.V)

Ângulos Opostos Pelo Vértice (O.P.V)



O é o vértice dos
ângulos m, n, r e d

Analisando a figura notamos que, m e n são ângulos opostos pelo vértice, o mesmo acontece com os ângulos r e d.
Os ângulos opostos pelo vértice são ângulos congruentes (iguais).

Logo:
m = n e r = d

Observamos também que:
m + r = 180º, m + d = 180º, n + r = 180º, n + d = 180º
Exercícios resolvidos:
1. Vamos determinar os valores de a nas figuras seguintes:



Ângulos


ÂNGULOS OPOSTOS PELO VÉRTICE
Observe os ângulos AÔB e CÔD na figura abaixo:



Verifique que:

Nesse caso, dizemos que os ângulos AÔB e CÔD são opostos pelo vértice (o.p.v). Assim:
Dois ângulos são opostos pelo vértice quando os lados de um deles são semi-retas opostas aos lados do outro.

Na figura abaixo, vamos indicar:



Sabemos que:
X + Y = 180º ( ângulos adjacentes suplementares)
X + K = 180º ( ângulos adjacentes suplementares)
Então:

Logo: y = k
Assim:
m (AÔB) = m (CÔD) AÔB CÔD
m (AÔD) = m (CÔB) AÔD CÔB
Daí a propriedade:
Dois ângulos opostos pelo vértice são congruentes.

Observe uma aplicação dessa propriedade na resolução de um problema:
• Dois ângulos opostos pelo vértice têm medidas, em graus, expressas por x + 60º e 3x - 40º. Qual é o valor de x?
Solução:
x + 60º = 3x - 40º ângulos o.p.v
x - 3x = - 40º - 60º
-2x = - 100º
x = 50º
Logo, o valor de x é 50º.

Fonte: Mundovestibular.com.br